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Abstract
A systematic investigation is performed on the damping of Rabi oscillations induced by an
external electromagnetic field interacting with a two-level semiconductor system. We have
considered a coherently driven two-level system coupled to a dephasing reservoir and shown
that, to explain the dependence of the dephasing rate on the driving intensity, it is essential to
consider the non-Markovian character of the reservoir. Moreover, we have demonstrated that
intensity-dependent damping may be induced by various dephasing mechanisms due to
stationary as well as non-stationary effects caused by coupling with the environment. Finally,
present results are able to explain a variety of experimental measurements available in the
literature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Rabi oscillations (ROs) of an emitter’s level population due to
the coupling with a driving field are already well established
and have been used as a universal tool for the control of
the dynamics of localized emitters. The existence of ROs
has been demonstrated in a variety of systems such as
atoms [1], superconductor devices [2–4], quantum wells [5]
and semiconductor quantum dots (QDs) [6–10]. Recently,
localized semiconductor systems exhibiting few discrete
energy levels, such as specially selected donor impurities
and QDs (termed as ‘artificial atoms’), are considered as
prospective candidates to play the role of basic building blocks
of quantum information processes [11]. They demonstrate
typical quantum dynamical features of isolated atoms. In
particular, they show ROs when coupled to a driving field.
So, they can be effectively controlled by using ultra-short
intensive laser pulses [6, 12]. By achieving control over
the dynamics of these localized states, two-qubit and multi-
qubit gate operations become real possibilities, provided that
the decoherence time is long enough [13]. For example,

recently, the possibility of operating two-qubit gates with
excitons and bi-excitons in QDs was demonstrated [14] and
a single-qubit Deutsch–Jozsa algorithm was experimentally
realized [15].

In localized semiconductor systems, ROs might occur in
a quite different way than for isolated atoms. In contrast
with real atoms, semiconductor artificial ones couple with
the surroundings in a more complicated manner. There are
a variety of loss mechanisms for localized semiconductor
systems, and some of them are essentially non-Markovian
ones, so that one needs to take into account memory effects
as well as the back-action of the dissipative reservoir on
the radiating system. For example, a dephasing caused by
spin–spin coupling with neighboring QDs or carriers captured
in traps in the vicinity of QDs was shown to lead to non-
Markovian dynamics [16–18]. Such reservoirs may have
correlation times comparable with the typical decoherence
time of the dephasing system. A dephasing due to coupling
with phonons was also shown to lead to non-Markovian
features in the system’s dynamics [19–21]. The influence
of electron–hole dipole–dipole interactions (local-field effects)
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was shown to lead to significant changes in the features
of the ROs [22]. In addition, carriers and excitons in
localized semiconductor systems may be coupled not only
to localized neighboring states but to delocalized ones as
well [23]. Exciton leakage to the wetting layer [24] and Auger
capture [25] may also be a significant source of dephasing
in QDs. As decoherence is one of the main obstacles to
quantum information, its understanding is then crucial to the
future development of quantum information processes based
on semiconductor QDs.

The diversity of dissipation channels has led to a
number of novel features in the observation of ROs in such
semiconductor systems. In the present work we focus our
attention on one peculiar phenomenon which has caused and
is still causing much controversy, namely the damping of ROs
due to the increase of the driving pulse area, which is an
observed feature of coherently excited localized semiconductor
systems [6–10]. Many conflicting attempts to explain the
dephasing process behind the ROs have been suggested. For
example, it has been attributed to the system’s interaction with
a non-Markovian reservoir of phonons [19, 20]. Nevertheless,
there is evidence that the dephasing process takes place even
when the coupling with phonons is negligible [8]. Another
proposal was based on excitations of bi-excitons [24, 26] in the
QD, although damped ROs are also observed when there is no
possibility of bi-exciton excitations [8]. Recently, it has been
demonstrated that the experimentally observed [7] intensity-
dependent damping of ROs can be reproduced by introducing
into the standard Bloch equations a dephasing rate dependent
on the driving-field intensity [27, 28]. On the other hand,
although there is an experimental confirmation of a driving
dependence on the dephasing rate [8], an intensity-independent
dephasing rate has also been measured [9].

The present investigation addresses this problem by
studying a simple two-level emitter excited by a classical
coherent field and coupled to a general dephasing reservoir.
The present work consists of an extended version that
includes details and further results of a short letter recently
published [29]. Within a straightforward approach based
on the interaction of the dressed system with a general
reservoir, we have demonstrated that a damping dependence
on the driving-field intensity may be achieved through a
variety of mechanisms which are observed in different
experimental set-ups, shedding some light on apparently
conflicting interpretations of the phenomenon. Finally, we
show that a driving-dependent damping of ROs may occur
whether the reservoir is influenced or not by the external
field. We organize the present study as follows: in section 2
we derive a time-local master equation by averaging over
the reservoir and obtaining generalized Bloch equations. In
section 3, we apply the formalism to a stationary reservoir that
is not influenced by the external driving and obtain an intensity-
dependent dephasing rate. In section 4 we investigate the
influence of the driving over the reservoir and study the effects
of non-stationary processes that occur in this case. Discussion
and conclusions are given in section 5.

2. General formalism

We consider the simplest model of a two-level system (TLS)
for a localized semiconductor emitter, which may represent,
for instance, two low-lying states of donor impurities in a
bulk semiconductor [6] or a two-level exciton system [7–9]
in a QD. We assume that the system is driven by a strong
resonant classical coherent field, and also that the population
damping of the two-level system is negligible and that it is
only affected by the coupling to a dephasing reservoir. This
assumption corresponds to the real experiments carried out at
low temperatures and with short intense laser pulses. This
means that the population damping is negligibly slow (1 ns
for experiments described in [7]) compared to the timescale
of the system’s evolution or to pulse widths of a few ps, and
to inverse dephasing rates of a few tens of ps [30]. Note that
the population damping due to exciton/carrier leakage may be
controlled and be kept small on the timescale of the system’s
dynamics [31, 32].

In the following, we consider a rotating-reference frame
with frequency, ωL, equal to the driving-field frequency.
We work in the ‘rotating-wave approximation’ (RWA).
The function �(t) describes the temporal shape of the
excitation pulse. Working in the interaction picture for the
reservoir variables, the effective Hamiltonian describing the
‘TLS + driving field + reservoir’ system is given by [18]

H (t) = h̄σ+σ−[� + R(t)] + h̄[�(t)σ+ + �∗(t)σ−], (1)

where σ± = |±〉〈∓| are the system’s rising and lowering
operators; |±〉 correspond to the excited and ground states of
the TLS and � = ω0 −ωL is the detuning of the TLS transition
frequency, ω0, from the driving laser frequency ωL, with the
possible addition of a time-independent frequency-shift term
originating from the interaction with the dephasing reservoir
represented by the operator R(t). In general, R(t) may
depend both on the dynamical and on the stochastic variables
describing the reservoirs, which will be detailed below. We
now assume that the reservoir correlation function 〈R(t)R(τ )〉
(the averaging is assumed to be taken over the whole set of
reservoir variables) satisfies the following requirement:

〈R(t)R(τ )〉 → 0, (2)

when t, τ → +∞ and |t − τ | → +∞. Moreover, we
suppose that the interaction of the system with the reservoir
is weak and that a possible induced entanglement between the
system and the reservoir disappears quickly on the timescale
of the system’s evolution (this is a necessary condition for
using the approximations considered here). Using the Born
approximation for the reservoir operator R(t), one may obtain
a simple, local in time master equation for Hamiltonian (1), by
following a scheme previously developed for the case of the
interaction of a spin system with a strong driving field in the
presence of a dephasing reservoir [16, 17, 33, 34]. The essence
of this approach is to treat the reservoir as a perturbation acting
on the TLS affected (‘dressed’) by the action of the driving
field instead of considering the ‘bare’ TLS perturbed by the
reservoir, as is usual. This is the most natural procedure
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whenever the driving field is sufficiently strong and then it
is convenient to consider the TLS plus the driving field as a
‘field-dressed TLS’ interacting with the reservoir. The former
‘bare’-TLS approach was assumed in a number of recent works
on ROs in localized semiconductor systems (see, for example,
the studies in [6–9, 12, 23, 24, 32]). In general, the bare-TLS
approach is done by taking a set of standard Bloch equations
for the description of the ‘TLS + driving field’ system, without
a closer understanding of the procedure that originates them.
As a result, some essential features of the problem have been
neglected. In what follows, we hope to clear up that a straight
implementation of such a standard procedure seems to be the
major source of the controversy that has recently arisen.

Introducing the unitary ‘dressing’ transformation given by

U(t) = ←−T exp

{
− i

h̄

∫ t

t0

H0(τ ) dτ

}
, (3)

where
←−T denotes the time-ordering operator, and

H0(t) = h̄�σ+σ− + h̄[�(t)σ+ + �∗(t)σ−], (4)

is the non-perturbed Hamiltonian. ‘Dressed’ operators are
defined as

S±(t) = U+(t)σ±U(t) = D(±)
+−(t)σ+σ− + D(±)

+ (t)σ+

+ D(±)
− (t)σ− + D(±)

0 (t), (5)

S+(t)S−(t) = U+(t)σ+σ−U(t) = D(+−)
+− (t)σ+σ−

+ D(+−)
+ (t)σ+ + D(+−)

− (t)σ− + D(+−)

0 (t), (6)

where the general forms of the ‘dressing’ functions D j
l (t), for

arbitrary �(t), are given in [35]. For instance, within the RWA
and for a rectangular driving pulse shape (�(t) ≡ �/2 =
const for the time interval of interest, t ∈ [0, T ], and �(t) = 0
outside of it), one obtains

D(+−)
+− (t) = 1

2 [1 + c2 + s2 cos(�Rt)], (7)

D(+−)
− (t) = i�

2�R
{c[1 − cos(�Rt)] + i sin(�Rt)}, (8)

where c = �/�R, s = �/�R and �R = √
�2 + �2.

In the interaction picture defined by the transformation (3),
the Hamiltonian (1) takes the form

H int(t) = U+(t)H (t)U(t) = h̄S+(t)S−(t)R(t), (9)

which will be used to derive the master equation.
Then, under the Born approximation and conditions

outlined above, one may use the time-convolutionless
projection operator technique or a cumulant’s expansion (see,
for example, [16–18, 33, 34]) to obtain the general local in time
master equation for the ‘dressed’ density matrix ρ(t) averaged
over the reservoir (we assume an averaging on both quantum
and classical stochastic variables and denote it by the symbol
〈· · ·〉), i.e.

d

dt
ρ(t) = −i[〈H int(t)〉, ρ(t)]

−
∫ t

t0

dτ 〈[H int(t), [H int(τ ), ρ(t)]]〉. (10)

Using equation (9), one may write

d

dt
ρ(t) = −i[S+(t)S−(t)〈R(t)〉, ρ(t)]

−
∫ t

t0

dτ 〈R(t)R(τ )〉(S+(t)S−(t)S+(τ )S−(τ )ρ(t)

− S+(t)S−(t)ρ(t)S+(τ )S−(τ )
)

−
∫ t

t0

dτ 〈R(τ )R(t)〉(ρ(t)S+(τ )S−(τ )S+(t)S−(t)

− S+(τ )S−(τ )ρ(t)S+(t)S−(t)
)
. (11)

To ‘undress’ the density matrix ρ(t), the transformation
inverse to the one given by equation (3) may be used to arrive
at the following master equation for the ‘bare’ system’s density
matrix ρ(t):

d

dt
ρ(t) = −i[H0(t) + σ+σ−〈R(t)〉, ρ(t)]

−
∫ t

t0

dτ 〈R(t)R(τ )〉(σ+σ−S+(τ − t)S−(τ − t)ρ(t)

− σ+σ−ρ(t)S+(τ − t)S−(τ − t)
)

−
∫ t

t0

dτ 〈R(τ )R(t)〉(ρ(t)S+(τ − t)S−(τ − t)σ+σ−

− S+(τ − t)S−(τ − t)ρ(t)σ+σ−)
. (12)

From the master equation (12) one obtains the following
set of Bloch equations with time-dependent coefficients:

dρ++
dt

= i
[
�(t)ρ−+ − �∗(t)ρ+−

]
, (13)

dρ+−
dt

= {i[� + 〈R(t)〉] − κ(t)}ρ+−

+ i�
∗
(t)[ρ−−(t) − ρ++(t)], (14)

where ρ++ = 〈+|ρ|+〉, ρ±∓ = 〈±|ρ|∓〉, and the time-
dependent dephasing rate κ(t) and the generalized Rabi
frequency �(t) are defined as

κ(t) =
∫ t

t0

dτ 〈R(τ )R(t)〉D(+−)
+− (τ − t), (15)

�(t) = �(t) −
∫ t

t0

dτ 〈R(τ )R(t)〉D(+−)
− (τ − t). (16)

The Bloch equations ((13) and (14)) are the basis to study
the coherently driven TLS coupled to a dephasing reservoir.
As we shall see below, they provide an adequate qualitative
description of the driving-dependent damping of ROs in a
number of practical situations.

3. Undriven reservoir

In this section, the simplest situation is assumed, with the
driving field interacting only with the localized TLS. In
this case one may demonstrate that, if the reservoir is non-
Markovian, driving-dependent damping of ROs occurs even
with an unperturbed reservoir. Also, it is shown that the
system will exhibit a Markovian or a non-Markovian behavior,
depending on the driving-field intensity.
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Firstly, one may consider the Markovian limit in which
〈R(τ )R(t)〉 ∼ δ(τ − t) and may assume that the average of the
reservoir operator, 〈R(t)〉, decays very fast (〈R(t)〉 → 0) on
the timescale of the TLS dynamics. In the case of a rectangular
driving pulse shape, equations ((7), (8), (15) and (16)) lead to
κ(t) = κ , i.e. a constant dephasing rate independent of the
driving-field intensity, and �(t) = �(t) = �/2. Substituting
these values into equations ((13) and (14)), one obtains the
standard system of Bloch equations:

d

dt
ρ++(t) = i

�

2
[ρ−+(t) − ρ+−(t)], (17)

d

dt
ρ+−(t) = (i� − κ) ρ+−(t) + i

�

2
[ρ−−(t) − ρ++(t)] (18)

for the driven TLS with dephasing.
Typical examples of the upper level population of the TLS

given by the Markovian Bloch equations ((17) and (18)) for the
rectangular pulse are presented in figure 1, where one notes that
the population tends to a constant value (=1/2) with increasing
time (figure 1(a)). As expected, for fixed Rabi frequencies
and increasing the κ dephasing rate, the oscillations decay
faster. Figure 1(b) shows a π -pulse influence on the upper-
state population of the TLS as a function of the Rabi frequency
which is related to the pulse area as

θ =
∫ +∞

−∞
dτ �(τ). (19)

For rectangular pulses (�(t) = �/2) the π -pulse area
corresponds to (�

2 )T = π , where T is the time needed for the
upper-state population to reach its first maximum. Note that, in
the Markovian limit, the population undergoes oscillations that
persist for arbitrarily large Rabi frequencies (cf dashed curve
in figure 1(b)).

A more general situation is found in the case of a
non-Markovian reservoir, for which the reservoir correlation
function is

〈R(τ )R(t)〉 = K (τ − t) + P(τ, t), (20)

i.e. the sum of a stationary process, K (τ − t), tending to a non-
zero value for t = τ when t, τ → +∞, plus a non-stationary
one, P(τ, t), tending to zero for t = τ when t, τ → +∞.
The non-stationary process P(τ, t) is responsible for the non-
Markovian effects at the initial stage of the TLS dynamics.
In section 4 we shall demonstrate that the non-stationary part
of the reservoir correlation function may lead to a driving-
dependent damping of ROs if the reservoir is excited by an
intensive coherent pulse.

In this section we assume that P(τ, t) and the average of
the reservoir’s operator, 〈R(t)〉, decay fast on the timescale of
the TLS dynamics. Thus, P(τ, t) and 〈R(t)〉 are neglected.
One may represent K (t) with the help of the Fourier transform
K (w) (which in some cases has the meaning of a spectral
density of the reservoir’s states, such as in the case of an
electromagnetic field or in the case of a reservoir of phonons)
in the following standard way:

K (t) =
∫

dwK (w) exp{−i(w − ωL)t}. (21)

0 2 4 6 8 10 12

(a)

Time (ps)

0 2 4 6 8 10 12

(b)
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0.8

1

Figure 1. Examples of the TLS upper-state population time
dependence at resonance: (a) the solid black line corresponds to the
Markovian solution of equations (17) and (18) with κ = 0.5 rad ps−1,
� = 1 rad ps−1, the dashed blue line corresponds to the solution with
κ = 1 rad ps−1, � = 1 rad ps−1 and the dotted green line corresponds
to κ = 0.5 rad ps−1, � = 1.5 rad ps−1; (b) the dashed red line
corresponds to the Markovian solution of the Bloch equations (17)
and (18) with κ = 0.5 rad ps−1, whereas the solid black
line is obtained for a non-Markovian reservoir and corresponds to the
solution of the Bloch equations with a driving-dependent dephasing
rate and generalized Rabi frequency given by equations (25)
and (27), for which we have chosen π K (ωL) = 0.5 rad ps−1;

d
dw

K (w)|w=ωL = 0; π

4
d2

dw2 K (w)|w=ωL = 0.05 rad ps−1.

For functions K (w) sufficiently smooth in the vicinity of the
laser frequency, ωL, one may assume that [36]∫ t

t0

dτ

∫
dwK (w) exp{−i(w − ωL)(τ − t)} → π K (ωL)

− iP
∫

dw
K (w)

w − ωL
, (22)

where P denotes the principal value of the integral; for K (ω)

smooth near ωL the second term on the right-hand side of (22)
usually corresponds to a very small frequency shift (the Lamb
shift in the unstructured vacuum is an example of it), which
will be neglected in further considerations.
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In the case of a rectangular pulse [�(t) = �/2], one
obtains [16, 17] a dephasing rate given by (cf equations ((7), (8)
and (15)))

κ(t) = 1
2

∫ t

t0

dτ

∫
dwK (w) exp{−i(w − ωL)(τ − t)}

×
(

1 + c2 + s2

2
exp{−i�R(τ − t)}

+ s2

2
exp{i�R(τ − t)}

)
. (23)

Note that equation (23) suggests that a sufficiently intense
driving field would probe K (w) far from the ωL frequency
and a single δ-function Markovian approximation would not
be suitable for an adequate physical description of the system
dynamics. On the other hand, if the K (w) spectrum is
smooth enough in the vicinity of all components of the Rabi
splitting triplet ωL, ωL ± �R, one may perform a Markovian-
like approximation for each of the triplet components (a
procedure implemented by Kilin and Nizovtsev in studies
on non-Markovian dephasing [16, 17], and recently used by
Florescu and John [37] when dealing with the resonance
fluorescence near the band edge). As the values of the K (w)

function are different at the triplet frequencies, it will result
in an intensity-dependent dephasing rate, as shown below.
Following the procedure (22), and neglecting frequency shifts,
the expression (23) is now

κ(t) ≡ κ = π
c2 + 1

2
K (ωL) + πs2

4
(K (ωL + �R)

+ K (ωL − �R)). (24)

Now, if the values of the function K (w) at ωL, ωL ± �R are
not very different, one may expand K (w) around ωL to obtain
from equation (24) the following equation:

κ = π K (ωL) + π�2

4

d2

dw2
K (w)

∣∣∣
w=ωL

(25)

for the κ dephasing rate, which depends on the intensity of
the driving field. Here we point out that such an intensity-
dependent recombination rate was used by Brandi et al
[27, 28] to model experimental data on Rabi oscillations in
localized semiconductor systems [7]. From equation (16), one
has [16, 17]

�(t) = �

2
− i�

2�R

×
∫ t

t0

dτ

∫
dwK (w) exp{−i(w − ωL)(τ − t)}

×
(

c − 1 + c

2
exp{−i�R(τ − t)}

+ 1 − c

2
exp{i�R(τ − t)}

)
(26)

and, using the same approximation as before for equation (25),
one obtains the generalized Rabi frequency

�(t) ≡ � = �

2
− iπ

�

2

d

dw
K (w)

∣∣∣
w=ωL

+ iπ��

4

d2

dw2
K (w)

∣∣∣
w=ωL

. (27)
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Figure 2. Rabi oscillations of the photocurrent, at resonance, as a
function of the excitation amplitude. The red dashed line is the
Markovian solution given by the Bloch equations with the dephasing
rate independent of the driving field, whereas the solid line is
obtained for a non-Markovian reservoir and corresponds to the
solution of the Bloch equations with a driving-dependent dephasing
rate and generalized Rabi frequency given by equations (25)
and (27). Full squares represent experimental data from Zrenner et al
[7] for a pulse width of about 1 ps. Here, a π-pulse corresponds to
the unit of the excitation amplitude.

As expected (cf figure 1(b)), predictions of the
Bloch equations based on the Markovian approximation
are drastically different from those obtained by using
equations (25) and (27), when one investigates the population
values at a fixed time, while varying the driving-field
amplitude (or Rabi frequency). The Markovian Bloch
equations demonstrate that the population undergoes persistent
oscillations (see the dashed curve in figure 1(b)), while the
driving-dependent dephasing rate (cf equation (25)) leads to
the decay of these oscillations. The decay rate of these
oscillations increases with increasing driving pulse area, i.e.
the amplitude of ROs decreases with the driving intensity and
after some cycles the population tends to a constant value. As
was mentioned above, such a behavior is typically found in
experiments on ROs in localized semiconductor systems. In
figures 2 and 3(a) we compare the present theoretical results
of quantities that are proportional to the emitter’s excited-state
population by using a driving-dependent dephasing rate for
the Bloch equations, with various available experimental data.
One may notice that a quite good agreement is achieved by
an appropriate choice of a couple of parameters (essentially a
‘Markovian’ dephasing rate, π K (ωL), and d2

dw2 K (w)|w=ωL in
equation (25); they are fitting parameters) and by adjusting the
timescale. In figure 3(b) we display, in a logarithmic scale,
the theoretical amplitudes of the ROs at the θ = nπ peaks
and valleys, with results indicating, as expected, that the RO is
faster damped for smaller τ pulse widths, as the laser intensity
is increased (present theoretical results are in overall agreement
with the experimental measurements of figure 1(d) by Wang
et al [8]).
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Figure 3. (a) ROs in the photoluminescence (PL) intensity, at
resonance, with full theoretical curves corresponding in descending
order to pulse widths of 9.3 ps, 7.0 ps and 5.4 ps, respectively.
Calculations are performed for a non-Markovian reservoir and
correspond to the solution of the Bloch equations with a
driving-dependent dephasing rate and generalized Rabi frequency.
Full symbols in (a) are the corresponding experimental data from
Wang et al [8]; (b) negative logarithm of the RO amplitude as a
function of the θ pulse area. Full symbols are the values calculated
by using the corresponding theoretical values of the θ = nπ
oscillation amplitudes taken from the peaks and valleys of the
theoretical ROs in (a).

To summarize the discussion presented in this section, we
emphasize once more that the dependence of the dephasing
rate on the driving intensity occurs as a natural consequence of
the non-Markovian reservoir ‘probed’ by a sufficiently intense
field driving the emitting system. Here we do not consider
a ‘full’ non-Markovian reservoir, as we partially neglect
effects of the reservoir (memory effects from P(τ, t) are
not considered) and consider a Markovian-like approximation
for the non-Markovian reservoir which only accounts for the
difference between the values of the Fourier transform of the
reservoir correlation function [16, 17] at different components
of the Rabi triplet. It is well illustrated by the formulae in

equations (25) and (27) which takes into account only the
properties of the function K (w) near one frequency point. We
note that the particular nature of the reservoir is not specified
here and it is not actually important as long as the reservoir
correlation function satisfies quite general requirements.

4. Driven reservoir

In section 3 we have neglected the influence of an externally
applied electromagnetic field on the localized system’s
surroundings. Let us now consider a more realistic situation
where the coherent pulse influences both the localized TLS and
its neighborhood, with effects on the wetting layer, defects,
phonon excitations, etc. Effects of such an influence are
twofold.

First, the stationary properties of the reservoir might be
affected, i.e. the function K (τ − t) may become dependent
on the � Rabi frequency. In this situation, one concludes
that, for a driving that weakly affects the surroundings, the
basic features of the system’s dynamics described in section 3
will remain the same. Indeed, if one neglects the effects
of the non-stationary aspects of the reservoir’s correlation
function (P(τ, t) in equation (20)) and assumes that its Fourier
transform K (w) (equation (21)) is smooth enough in the
vicinity of the components of the Rabi triplet, one still ends up
with equations (25) and (27). The only difference found is that
the function K (w,�) is now dependent on the Rabi frequency.
By using the expansion

K (w,�) ≈ K (w, 0) + �
d

dξ
K (w, ξ)

∣∣∣
ξ=�

, (28)

and retaining in formulae ((25) and (27)) only terms up to the
second order on �, one will find the same dependence on the
Rabi frequency

κ(�) ∼ κ0 + κ1� + κ2�
2, (29)

where the coefficients κi are defined by the expansion of
the function K (w,�) and its derivatives. Of course, all the
consequences of such dependence (driving-dependent damping
of ROs in particular) are similar to those found in section 3.

Second, non-stationary effects, described by the non-
stationary process P(τ, t) that composes the reservoir’s
correlation function, might come into play. Let us concentrate
now on the consequences of non-Markovian effects of
the system–reservoir interaction at the initial stage of the
evolution, which are described by P(τ, t). We shall
demonstrate that such essentially non-Markovian effects lead
to the picture of the driving-dependent damping of ROs quite
similar to those discussed in section 3.

To illustrate the nature and the consequences of these
non-stationary effects let us consider a simple model of a
bosonic reservoir driven by the same rectangular pulse that
drives the TLS under investigation. Physically, it corresponds,
for example, to a reservoir of phonons (or free carriers in
the wetting layer, coupling to bi-excitons, a combination of
mechanisms, etc) excited by the action of a driving field on the
localized TLS and its neighborhood. Furthermore, we neglect
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the damping of the bosonic reservoir during the time intervals
of interest. Describing the driving field–reservoir interaction
within a rotating frame whose driving mode frequency is the
same as the driving field ωL and working in the RWA, one may
write the following effective Hamiltonian for the whole system
as

H1(t) = h̄�σ+σ− + h̄[�(t)σ+ + �∗(t)σ−] + h̄σ+σ−

×
∑

j

g j(b
†
j exp{iωL(t − t0)} + b j exp{−iωL(t − t0)})

+ h̄
∑

j

� j b
†
j b j + h̄

∑
j

� j(b
†
j + b j), (30)

where b†
j , b j are bosonic creation and annihilation operators,

respectively, for the j th mode of the reservoir, g j are
interaction constants of the TLS with the j th mode, � j are
the detunings of the reservoir modes from the driving field and
� j are the Rabi frequencies for every particular reservoir mode
(here, for simplicity, chosen real).

Using the interaction picture with respect to the reservoir
Hamiltonian

Hres = h̄
∑

j

� j b
†
j b j +

∑
j

� j(b
†
j + b j), (31)

one immediately finds the Hamiltonian (1) with the reservoir
operator:

R(t) =
∑

j

g j

{
b j + � j

� j

}
exp{−i(ωL + � j)(t − t0)} + h.c.,

(32)
and the TLS detuning shifted due to the interaction with the
excited reservoir, i.e.

� → � − 2

{∑
j

g j
� j

� j

}
. (33)

Supposing that the initial state of the reservoir is a vacuum
state, we find

〈R(t)〉 =
∑

j

g j
� j

� j
exp{−i(ωL + � j)(t − t0)} + h.c., (34)

and the reservoir correlation function, 〈R(τ )R(t)〉, becomes
the sum of the stationary correlation

K (τ, t) =
∑

j

g2
j exp{−i(ωL + � j)(τ − t)}, (35)

plus the non-stationary one:

P(τ, t) = 〈R(τ )〉〈R(t)〉. (36)

The dependence of the dephasing rate on the driving
intensity that stems from the stationary correlation (35) leads
to the effects already described in section 3 so that we neglect
it in the following. Let us now assume that the spectrum of the
reservoir’s correlation function is wide and smooth enough to
exhibit the stationary dephasing rate κs practically independent

of the external driving. Then, from equation (15), one may
conclude that

κ(t) = κs + 〈R(t)〉
∫ t

t0

dτ 〈R(τ )〉D(+−)
+− (τ − t). (37)

Clearly, the non-stationary dephasing rate κ(t) decays
in time, since 〈R(t)〉 → 0 for t → ∞. However
the function 〈R(t)〉 may decay slower than the stationary
correlation function K (t), considering that the influence of
the external field over the different modes of the reservoir
is different, and that the spectral density of the reservoir’s
excitation may be much narrower than the spectra of the
reservoir’s correlation function. Moreover, in experiments on
ROs in localized semiconductor systems one deals with rather
short driving pulses, so that the non-stationary dephasing rate
might play a significant role in the system’s dynamics. As
the Rabi frequencies of the reservoir modes are proportional
to the driving-field amplitude, one may take � j ∼ � to obtain
a dephasing rate of the form

κ(t) = κs + �2 f (t), (38)

where the function f (t) → 0 for t → ∞. Thus here,
even if one assumes D(+−)

+− (τ − t) ≈ 1 (i.e. if one assumes
Markovianity of the reservoir in the absence of the reservoir
excitation by the driving), the non-stationary dephasing rate
will be dependent on the driving-field intensity, which means
that the intensity-dependent Rabi oscillation appear here as a
purely non-Markovian dynamical effect. Furthermore, it leads
to an intensity-dependent damping of the Rabi oscillations
quite similar to the one considered in section 3. It should be
noted that this effect may well be responsible for the constant
value of the dephasing rate measured after the application of
the driving pulse in the experiment by Patton et al [9]. We
now illustrate the discussion of this section with a particular
example. Let us assume a simple decaying form for the average
of the reservoir operator

〈R(t)〉 ∼ γ� exp{−γ (t − t0)}, (39)

where γ is the decay rate of the average of the reservoir’s
operator. Such a decaying form of the correlation function was
chosen, for example, in [16, 17]. One can see in figure 4 that
even for the stationary dephasing rate κs independent of the
driving, one finds decaying Rabi oscillations when the pulse
increases. Note that, in the case that D(+−)

+− (τ − t) is chosen
as in equation (7), the κ dephasing rate displays oscillations
which may be traced back to the cos(�Rt) factor in the
dressing function D(+−)

+− (t) (cf equation (37) and full curve in
figure 4(a)). Also, as the decay time of the dephasing rate κ(t)
to reach its stationary value κs becomes shorter than the pulse
width, experiments on the driving-damped ROs in localized
semiconductor systems might as well exhibit a dephasing rate
independent of the driving, when measurements are performed
after the application of the excitation pulse. Moreover, it could
also exhibit a decreased dephasing rate after the application of
the pulse as in the experiment by Wang et al [8].

From the above considerations, one infers that a
driving-dependent damping of ROs due to the non-stationary

7



J. Phys.: Condens. Matter 21 (2009) 055801 D Mogilevtsev et al

0 2 4 6
0

5

10

15
(b)

P
ho

to
cu

rr
en

t (
pA

)

0 2 4 6 8

2

4

(a)

Time (ps)

Excitation amplitude (arb. units)

Figure 4. Examples of (a) temporal behavior of the κ(t) dephasing
rate (with � = 5 rad ps−1) and (b) upper-state population dynamics,
at a time corresponding to the temporal width of the rectangular
pulse, versus excitation amplitude. Calculations were performed at
resonance with a dephasing rate given by equation (37) with
κs = 0.1 rad ps−1 and a model reservoir correlation 〈R(t)〉 defined by
equation (39) with γ = 0.5 ps−1 (a). For (b) parameters were scaled
in such a way as to fit the timescale of figure 2; γ = 5 ps−1 and
κs = 0.1 rad ps−1 were chosen. In both figures red dashed lines
correspond to D(+−)

+− (τ − t) = 1, whereas solid black lines
correspond to D(+−)

+− (τ − t) defined in equation (7).

reservoir’s correlation function may take place for quite
general reservoirs (an ensemble of other localized systems,
traps, free carriers in a wetting layer, etc). We emphasize
that non-stationary effects of a non-Markovian nature of
the reservoir’s excitation by the intensive coherent pulse
might produce the intensity-dependent Rabi oscillations of the
system’s upper-state population in a similar fashion as those
produced by the stationary dependence of the dephasing rate
on the driving intensity.

5. Conclusions

In conclusion, we have demonstrated that the intensity-
dependent damping of Rabi oscillations in localized semicon-

ductor systems (such as QDs, systems of two-level shallow im-
purities in bulk semiconductors, etc) is an effect of a quite gen-
eral nature. It is a consequence of the non-Markovian character
of a reservoir to which the system is inevitably coupled. The
exact nature of the reservoir (an ensemble of phonons, other lo-
calized systems, traps, free carriers in a wetting layer, coupling
to bi-excitons or higher decaying levels, etc) is not particularly
important to induce the effect. Particular details of the reser-
voir’s structure and physics would only influence the quantita-
tive characteristics of the system’s dynamics, such as the num-
ber of ROs occurring until decay, a typical timescale of the pro-
cess and the interplay between stationary and non-stationary
effects of the interaction with the reservoir. The most important
features for the manifestation of the driving-dependent ROs are
(i) significant differences in values of the reservoir’s correlation
function spectrum on a scale determined by the Rabi frequency
induced by the driving field and (ii) comparability of a decay
time of the non-stationary correlation function of the reservoir
and the temporal driving pulse width.

We have demonstrated that observable similar damping of
ROs may occur as a consequence of very different physical
mechanisms. The first one stems from the stationary properties
of the reservoir whether or not the reservoir is affected directly
by the driving. The second type of damping is purely of
a non-stationary nature, occurring when the field excites the
reservoir and the decay time of the non-stationary reservoir’s
correlation function is comparable with the driving pulse
width. It is important to note when the contribution of the
latter mechanism overcomes the others, so the measurement
of the dephasing rate after the application of the driving pulse
exhibits a smaller dephasing rate in comparison with the results
obtained from measurements made during the action of the
driving pulse. Therefore, one may even obtain the same value
of the dephasing rate as in the absence of the driving. To
conclude, we emphasize that the simple analysis given in the
current work may be easily generalized and extended for more
complicated localized systems (multi-level ones, for example),
and for reservoirs of different natures.
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